3.5.39 \(\int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx\) [439]

3.5.39.1 Optimal result
3.5.39.2 Mathematica [C] (verified)
3.5.39.3 Rubi [A] (verified)
3.5.39.4 Maple [A] (verified)
3.5.39.5 Fricas [C] (verification not implemented)
3.5.39.6 Sympy [C] (verification not implemented)
3.5.39.7 Maxima [F]
3.5.39.8 Giac [F]
3.5.39.9 Mupad [F(-1)]

3.5.39.1 Optimal result

Integrand size = 24, antiderivative size = 298 \[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=-\frac {2 (A+3 B x) \sqrt {a+c x^2}}{3 e (e x)^{3/2}}+\frac {4 B \sqrt {c} x \sqrt {a+c x^2}}{e^2 \sqrt {e x} \left (\sqrt {a}+\sqrt {c} x\right )}-\frac {4 \sqrt [4]{a} B \sqrt [4]{c} \sqrt {x} \left (\sqrt {a}+\sqrt {c} x\right ) \sqrt {\frac {a+c x^2}{\left (\sqrt {a}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{e^2 \sqrt {e x} \sqrt {a+c x^2}}+\frac {2 \left (3 \sqrt {a} B+A \sqrt {c}\right ) \sqrt [4]{c} \sqrt {x} \left (\sqrt {a}+\sqrt {c} x\right ) \sqrt {\frac {a+c x^2}{\left (\sqrt {a}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{3 \sqrt [4]{a} e^2 \sqrt {e x} \sqrt {a+c x^2}} \]

output
-2/3*(3*B*x+A)*(c*x^2+a)^(1/2)/e/(e*x)^(3/2)+4*B*x*c^(1/2)*(c*x^2+a)^(1/2) 
/e^2/(a^(1/2)+x*c^(1/2))/(e*x)^(1/2)-4*a^(1/4)*B*c^(1/4)*(cos(2*arctan(c^( 
1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/a^(1/4)))*Ell 
ipticE(sin(2*arctan(c^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*c^(1 
/2))*x^(1/2)*((c*x^2+a)/(a^(1/2)+x*c^(1/2))^2)^(1/2)/e^2/(e*x)^(1/2)/(c*x^ 
2+a)^(1/2)+2/3*c^(1/4)*(cos(2*arctan(c^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/co 
s(2*arctan(c^(1/4)*x^(1/2)/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2 
)/a^(1/4))),1/2*2^(1/2))*(3*B*a^(1/2)+A*c^(1/2))*(a^(1/2)+x*c^(1/2))*x^(1/ 
2)*((c*x^2+a)/(a^(1/2)+x*c^(1/2))^2)^(1/2)/a^(1/4)/e^2/(e*x)^(1/2)/(c*x^2+ 
a)^(1/2)
 
3.5.39.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.28 \[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=-\frac {2 x \sqrt {a+c x^2} \left (A \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {1}{2},\frac {1}{4},-\frac {c x^2}{a}\right )+3 B x \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-\frac {1}{4},\frac {3}{4},-\frac {c x^2}{a}\right )\right )}{3 (e x)^{5/2} \sqrt {1+\frac {c x^2}{a}}} \]

input
Integrate[((A + B*x)*Sqrt[a + c*x^2])/(e*x)^(5/2),x]
 
output
(-2*x*Sqrt[a + c*x^2]*(A*Hypergeometric2F1[-3/4, -1/2, 1/4, -((c*x^2)/a)] 
+ 3*B*x*Hypergeometric2F1[-1/2, -1/4, 3/4, -((c*x^2)/a)]))/(3*(e*x)^(5/2)* 
Sqrt[1 + (c*x^2)/a])
 
3.5.39.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 283, normalized size of antiderivative = 0.95, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {546, 27, 556, 555, 1512, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+c x^2} (A+B x)}{(e x)^{5/2}} \, dx\)

\(\Big \downarrow \) 546

\(\displaystyle -\frac {4 c \int -\frac {A+3 B x}{2 \sqrt {e x} \sqrt {c x^2+a}}dx}{3 e^2}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 c \int \frac {A+3 B x}{\sqrt {e x} \sqrt {c x^2+a}}dx}{3 e^2}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 556

\(\displaystyle \frac {2 c \sqrt {x} \int \frac {A+3 B x}{\sqrt {x} \sqrt {c x^2+a}}dx}{3 e^2 \sqrt {e x}}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 555

\(\displaystyle \frac {4 c \sqrt {x} \int \frac {A+3 B x}{\sqrt {c x^2+a}}d\sqrt {x}}{3 e^2 \sqrt {e x}}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 1512

\(\displaystyle \frac {4 c \sqrt {x} \left (\left (\frac {3 \sqrt {a} B}{\sqrt {c}}+A\right ) \int \frac {1}{\sqrt {c x^2+a}}d\sqrt {x}-\frac {3 \sqrt {a} B \int \frac {\sqrt {a}-\sqrt {c} x}{\sqrt {a} \sqrt {c x^2+a}}d\sqrt {x}}{\sqrt {c}}\right )}{3 e^2 \sqrt {e x}}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 c \sqrt {x} \left (\left (\frac {3 \sqrt {a} B}{\sqrt {c}}+A\right ) \int \frac {1}{\sqrt {c x^2+a}}d\sqrt {x}-\frac {3 B \int \frac {\sqrt {a}-\sqrt {c} x}{\sqrt {c x^2+a}}d\sqrt {x}}{\sqrt {c}}\right )}{3 e^2 \sqrt {e x}}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {4 c \sqrt {x} \left (\frac {\left (\sqrt {a}+\sqrt {c} x\right ) \sqrt {\frac {a+c x^2}{\left (\sqrt {a}+\sqrt {c} x\right )^2}} \left (\frac {3 \sqrt {a} B}{\sqrt {c}}+A\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^2}}-\frac {3 B \int \frac {\sqrt {a}-\sqrt {c} x}{\sqrt {c x^2+a}}d\sqrt {x}}{\sqrt {c}}\right )}{3 e^2 \sqrt {e x}}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {4 c \sqrt {x} \left (\frac {\left (\sqrt {a}+\sqrt {c} x\right ) \sqrt {\frac {a+c x^2}{\left (\sqrt {a}+\sqrt {c} x\right )^2}} \left (\frac {3 \sqrt {a} B}{\sqrt {c}}+A\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^2}}-\frac {3 B \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x\right ) \sqrt {\frac {a+c x^2}{\left (\sqrt {a}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^2}}-\frac {\sqrt {x} \sqrt {a+c x^2}}{\sqrt {a}+\sqrt {c} x}\right )}{\sqrt {c}}\right )}{3 e^2 \sqrt {e x}}-\frac {2 \sqrt {a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}\)

input
Int[((A + B*x)*Sqrt[a + c*x^2])/(e*x)^(5/2),x]
 
output
(-2*(A + 3*B*x)*Sqrt[a + c*x^2])/(3*e*(e*x)^(3/2)) + (4*c*Sqrt[x]*((-3*B*( 
-((Sqrt[x]*Sqrt[a + c*x^2])/(Sqrt[a] + Sqrt[c]*x)) + (a^(1/4)*(Sqrt[a] + S 
qrt[c]*x)*Sqrt[(a + c*x^2)/(Sqrt[a] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^ 
(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(c^(1/4)*Sqrt[a + c*x^2])))/Sqrt[c] + ((A + 
 (3*Sqrt[a]*B)/Sqrt[c])*(Sqrt[a] + Sqrt[c]*x)*Sqrt[(a + c*x^2)/(Sqrt[a] + 
Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(2*a^(1 
/4)*c^(1/4)*Sqrt[a + c*x^2])))/(3*e^2*Sqrt[e*x])
 

3.5.39.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 546
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[(e*x)^(m + 1)*(c*(m + 2) + d*(m + 1)*x)*((a + b*x^2)^p/(e*(m + 
 1)*(m + 2))), x] - Simp[2*b*(p/(e^2*(m + 1)*(m + 2)))   Int[(e*x)^(m + 2)* 
(a + b*x^2)^(p - 1)*(c*(m + 2) + d*(m + 1)*x), x], x] /; FreeQ[{a, b, c, d, 
 e}, x] && GtQ[p, 0] && LtQ[m, -2] &&  !ILtQ[m + 2*p + 3, 0]
 

rule 555
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> 
Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + c*x^4], x], x, Sqrt[x]], x] /; Free 
Q[{a, c, f, g}, x]
 

rule 556
Int[((c_) + (d_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symb 
ol] :> Simp[Sqrt[x]/Sqrt[e*x]   Int[(c + d*x)/(Sqrt[x]*Sqrt[a + b*x^2]), x] 
, x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1512
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/q 
 Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a, c 
, d, e}, x] && PosQ[c/a]
 
3.5.39.4 Maple [A] (verified)

Time = 0.62 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.02

method result size
default \(\frac {\frac {2 A \sqrt {\frac {c x +\sqrt {-a c}}{\sqrt {-a c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-a c}}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-a c}}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a c}\, x}{3}-2 B \sqrt {\frac {c x +\sqrt {-a c}}{\sqrt {-a c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-a c}}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, F\left (\sqrt {\frac {c x +\sqrt {-a c}}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right ) a x +4 B \sqrt {\frac {c x +\sqrt {-a c}}{\sqrt {-a c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-a c}}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, E\left (\sqrt {\frac {c x +\sqrt {-a c}}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right ) a x -2 B c \,x^{3}-\frac {2 A c \,x^{2}}{3}-2 a B x -\frac {2 a A}{3}}{x \sqrt {c \,x^{2}+a}\, e^{2} \sqrt {e x}}\) \(303\)
risch \(-\frac {2 \sqrt {c \,x^{2}+a}\, \left (3 B x +A \right )}{3 x \,e^{2} \sqrt {e x}}+\frac {2 c \left (\frac {A \sqrt {-a c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right )}{c \sqrt {c e \,x^{3}+a e x}}+\frac {3 B \sqrt {-a c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, \left (-\frac {2 \sqrt {-a c}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{c \sqrt {c e \,x^{3}+a e x}}\right ) \sqrt {\left (c \,x^{2}+a \right ) e x}}{3 e^{2} \sqrt {e x}\, \sqrt {c \,x^{2}+a}}\) \(334\)
elliptic \(\frac {\sqrt {\left (c \,x^{2}+a \right ) e x}\, \left (-\frac {2 A \sqrt {c e \,x^{3}+a e x}}{3 e^{3} x^{2}}-\frac {2 \left (c e \,x^{2}+a e \right ) B}{e^{3} \sqrt {x \left (c e \,x^{2}+a e \right )}}+\frac {2 A \sqrt {-a c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right )}{3 e^{2} \sqrt {c e \,x^{3}+a e x}}+\frac {2 B \sqrt {-a c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}\, \sqrt {-\frac {x c}{\sqrt {-a c}}}\, \left (-\frac {2 \sqrt {-a c}\, E\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a c}}{c}\right ) c}{\sqrt {-a c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{e^{2} \sqrt {c e \,x^{3}+a e x}}\right )}{\sqrt {e x}\, \sqrt {c \,x^{2}+a}}\) \(353\)

input
int((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3/x*(A*((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-a*c)^(1/ 
2))/(-a*c)^(1/2))^(1/2)*(-x/(-a*c)^(1/2)*c)^(1/2)*EllipticF(((c*x+(-a*c)^( 
1/2))/(-a*c)^(1/2))^(1/2),1/2*2^(1/2))*(-a*c)^(1/2)*x-3*B*((c*x+(-a*c)^(1/ 
2))/(-a*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*( 
-x/(-a*c)^(1/2)*c)^(1/2)*EllipticF(((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2) 
,1/2*2^(1/2))*a*x+6*B*((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*2^(1/2)*((-c 
*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*(-x/(-a*c)^(1/2)*c)^(1/2)*EllipticE(( 
(c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2),1/2*2^(1/2))*a*x-3*B*c*x^3-A*c*x^2- 
3*a*B*x-a*A)/(c*x^2+a)^(1/2)/e^2/(e*x)^(1/2)
 
3.5.39.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.27 \[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=\frac {2 \, {\left (2 \, \sqrt {c e} A x^{2} {\rm weierstrassPInverse}\left (-\frac {4 \, a}{c}, 0, x\right ) - 6 \, \sqrt {c e} B x^{2} {\rm weierstrassZeta}\left (-\frac {4 \, a}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{c}, 0, x\right )\right ) - \sqrt {c x^{2} + a} {\left (3 \, B x + A\right )} \sqrt {e x}\right )}}{3 \, e^{3} x^{2}} \]

input
integrate((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x, algorithm="fricas")
 
output
2/3*(2*sqrt(c*e)*A*x^2*weierstrassPInverse(-4*a/c, 0, x) - 6*sqrt(c*e)*B*x 
^2*weierstrassZeta(-4*a/c, 0, weierstrassPInverse(-4*a/c, 0, x)) - sqrt(c* 
x^2 + a)*(3*B*x + A)*sqrt(e*x))/(e^3*x^2)
 
3.5.39.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.29 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.35 \[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=\frac {A \sqrt {a} \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {c x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac {5}{2}} x^{\frac {3}{2}} \Gamma \left (\frac {1}{4}\right )} + \frac {B \sqrt {a} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {c x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac {5}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} \]

input
integrate((B*x+A)*(c*x**2+a)**(1/2)/(e*x)**(5/2),x)
 
output
A*sqrt(a)*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), c*x**2*exp_polar(I*pi)/a 
)/(2*e**(5/2)*x**(3/2)*gamma(1/4)) + B*sqrt(a)*gamma(-1/4)*hyper((-1/2, -1 
/4), (3/4,), c*x**2*exp_polar(I*pi)/a)/(2*e**(5/2)*sqrt(x)*gamma(3/4))
 
3.5.39.7 Maxima [F]

\[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=\int { \frac {\sqrt {c x^{2} + a} {\left (B x + A\right )}}{\left (e x\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x, algorithm="maxima")
 
output
integrate(sqrt(c*x^2 + a)*(B*x + A)/(e*x)^(5/2), x)
 
3.5.39.8 Giac [F]

\[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=\int { \frac {\sqrt {c x^{2} + a} {\left (B x + A\right )}}{\left (e x\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x, algorithm="giac")
 
output
integrate(sqrt(c*x^2 + a)*(B*x + A)/(e*x)^(5/2), x)
 
3.5.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B x) \sqrt {a+c x^2}}{(e x)^{5/2}} \, dx=\int \frac {\sqrt {c\,x^2+a}\,\left (A+B\,x\right )}{{\left (e\,x\right )}^{5/2}} \,d x \]

input
int(((a + c*x^2)^(1/2)*(A + B*x))/(e*x)^(5/2),x)
 
output
int(((a + c*x^2)^(1/2)*(A + B*x))/(e*x)^(5/2), x)